K3 surfaces with Picard number three and canonical vector heights
نویسندگان
چکیده
In this paper we construct the first known explicit family of K3 surfaces defined over the rationals that are proved to have geometric Picard number 3. This family is dense in one of the components of the moduli space of all polarized K3 surfaces with Picard number at least 3. We also use an example from this family to fill a gap in an earlier paper by the first author. In that paper, an argument for the nonexistence of canonical vector heights on K3 surfaces of Picard number 3 was given, based on an explicit surface that was not proved to have Picard number 3. We redo the computations for one of our surfaces and come to the same conclusion.
منابع مشابه
Canonical Vector Heights on K3 Surfaces with Picard Number Three – Addendum
In an earlier paper by the first author, an argument for the nonexistence of canonical vector heights on K3 surfaces of Picard number three was given, based on an explicit surface that was not proved to have Picard number three. In this paper, we fill the gap in the argument by redoing the computations for another explicit surface for which we prove that the Picard number equals three. The conc...
متن کاملCanonical vector heights on K3 surfaces with Picard number three - An argument for nonexistence
In this paper, we investigate a K3 surface with Picard number three and present evidence that strongly suggests a canonical vector height cannot exist on this surface.
متن کاملPolyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number
A K3-surface is a (smooth) surface which is simply connected and has trivial canonical bundle. In these notes we investigate three particular pencils of K3-surfaces with maximal Picard number. More precisely the general member in each pencil has Picard number 19 and each pencil contains four surfaces with Picard number 20. These surfaces are obtained as the minimal resolution of quotients X/G, ...
متن کاملCanonical Heights, Invariant Currents, and Dynamical Systems of Morphisms Associated with Line Bundles
We construct canonical heights of subvarieties for dynamical systems of several morphisms associated with line bundles defined over a number field, and study some of their properties. We also construct invariant currents for such systems over C. Introduction Let X be a projective variety over a field K and fi : X → X (i = 1, · · · , k) morphisms over K. Let L be a line bundle on X, and d > k a ...
متن کاملCox rings of K3 surfaces with Picard number two
We study presentations of Cox rings of K3 surfaces of Picard number two. In particular we consider the Cox rings of classical examples of K3 surfaces, such as quartic surfaces containing a line and doubly elliptic K3 surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 76 شماره
صفحات -
تاریخ انتشار 2007